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A formula for truncation errors of convection terms arising from the 
Navier-Stokes equation in a curvilinear coordinate system is derived. 
These truncation error terms are interpreted in terms of grid size, grid 
uniformity, grid line angle, flow angle, and derivatives of flow proper- 
ties to gain physical insights from the formula. The role of these factors 
in determining truncation errors is discussed. It is shown that an optimal 
grid arrangement cannot be obtained without considering the inter- 
actions between the grid and the flow field. The effect of the grid 
orthogonality on truncation errors is also analyzed for simple cases. The 
derived formula provides a useful indicator for truncation error distribu- 
tion which yields guidelines for grid adaption. 0 1992 Academic Press. Inc. 

INTRODUCTION 

Body-fitted coordinate system is becoming more widely 
employed in Navier-Stokes equation solvers due to its 
flexibility in handling complex geometry and in utilizing 
grid generation techniques. In transforming to a general 
curvilinear coordinate, the governing equations become 
more complicated and there is ambiguity in the analysis of 
truncation errors after transformation. de Rivas [l] con- 
cluded that grid nonuniformity increased truncation errors. 
Castro and Jones [2] also found that nonuniformity may 
lower the order of the truncation errors. Forester [3] 
suggested that grid size ratio between two neighboring grids 
should be kept under two. A more detailed study on this 
subject was conducted by Thompson and Mastin [4] and 
Thompson er al. [S]. In these two studies, the leading trun- 
cation error term for a first derivative is derived and the 
authors concluded that if the angle between grid lines is no 
less than 45”, the errors attributed to grid nonorthogonality 
are of little concern. In the present study, an effort is made 
to clarify the role of each factor described above. A formula 
for the truncation errors of two-dimensional convection 
terms in a curvilinear coordinate system is derived. The 
expression obtained is interpreted in terms of grid size, grid 
size ratio, angle between grid lines, and derivatives of flow 
properties to gain physical insights. Useful guidelines for 
grid distributing can be derived from these truncation error 

expressions. By using the derived formula as an error 
indicator, an adaptive grid method is employed to illustrate 
that with appropriate grid adaption the truncation error 
can be reduced. 

TRUNCATION ERRORS OF TWO-DIMENSIONAL 
CONVECTION TERMS 

The derivation starts from the truncation error of the first 
derivative term. Following the analysis of Thompson et al. 
[S] and using the second-order upwind differencing 
scheme, the first derivative term f, can be expressed as 

-3fi,j+4f,+l,j-fi+2,, 
245’ 

-Ye 
-3fi,j+4h,j+I-~,~+2 

241 1 + T X) (1) 
where J= xg y,, - x,, y, is the Jacobian, 5,~ are the general 
coordinates, and the truncation error TX is 

TX = +J [y, fter At2 - y, f,,,, A?‘] + Higher Order Terms. 

(2) 

Up to this stage, the metric coefficients and the Jacobian J 
are kept in their exact form. Iff,,, , f,,,, are further expanded 
by using total differentiation, TX can be expressed as 

TX = TX, + TX2 + TX3 + Higher Order Terms, (3) 

where TX, is the truncation error which contains the first 
derivatives off TX2 the second derivatives, and TX3 the third 
derivatives. That is, by taking A( = A? = 1, 

T,I = +J C(Y,,-QR - Y+,,,) fx + (Y, ym - ~5 Y,,,) f,l 
(4) 
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L = f [(xc_ Y~XR -x7 Y<x,,) fxx their transformed form is 

+(YgY~x~5+xgY~Yy55-Y5Y~x,,--x,YgY,,)f,, 

+ (Ye Ya Yt5 - Y, Y, Yv7) fwl (5) 

T,,=~C(y,x:-y~x:)f,,,+ 3(YrY,x:-YsY,X:) fx, 
where a, P are the contravariant velocities 

+3(x5Y,Y:-x,YgY~)fxyv+(Y~Yy:-ygy~)fy~~]. 
(f-5) 

D=uy,-vx, 

v=vxr-uy,. 
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(9) 

(10) 

If the metric coefficients are evaluated numerically by the By using the second-order upwind differencing scheme for 
same second-order upwind scheme used above, for example, the convection terms and the second-order central scheme 

for the metric coefficients and substituting the truncation 

Xt = 
-Xi,j+4Xi+l,j-3X,+*,j l 

245 
+ 3 x&W2 

expression TX and its counterpart for T, into Eq. (8), one 
may obtain the truncation errors T, for the convection 
terms of Eq. (8) as 

+ Higher Order Terms 

then by substituting these metric coefficients and J in 
Eq. (1) fx becomes 

= T,, + TE2 + T,, + Higher Order Terms, (11) 

where 

fr = bJ 
I 

Y, +; Y,,,(Av)~ ft +;ftiiW)' I[ 1 
- I.;+~Y;i:(A:)'][f~+ff,,,l) 

[ 

T,,=~C(~x::s+~x,,,)f,+(~y::i+ b&f,1 (12) 

+ Higher Order Terms, 
TEZ=3@7+xte+ ~x,~,,)fxx+CO(y5~55+xt;yt5) 

AJ= ~Y,&v)~ + Y,x&W’ - y~xs&W2 

- x,, Y,&A~)~] + Higher Order Terms. 

After similar manipulations, it is found that TX, vanishes, 
and TX becomes 

TX = TX2 + TX3 + Higher Order Terms. (7) 

Note that this is the same expression obtained by 
Thompson et al. [S] in one-dimensional form. However, if 
the metric coefficients are evaluated by the second-order 
central scheme, as they are in the present study, TX, appears 
again with the same form as Eq. (4), except that the leading 
constant f is replaced by 4. TX2 and TX3 remain the same as 
in Eqs. (5) and (6). 

For the two-dimensional convection terms written in the 
form 

af af 
Pu&+Pt')?, (8) 

+ ~tY,%7,+x,Y,,H fxy+(~Y5Y5c:+ ~Y,Y,,)f,j 

(13) 

+3(&Y;+ ~xqY;)fxyy+(~Y;+ ~Y:,f,,,l. (14) 

It is noted that T,, appears since, as mentioned above, a 
scheme other than that used in Eq. (8) is employed for the 
metric coefficients. Equations (12) to (14) are the truncation 
errors for the two-dimensional convection terms up to third 
derivatives off: The physical interpretation of Eqs. (12) to 
(14) is not clear in their present forms. To further interpret 
the meaning of these terms, one can substitute physical 
dimensions and angles between grid lines for those metric 
coefficients as detailed in the following. 

Figure 1 shows the definitions and relationships among 
different angles and grid sizes. In the analysis, a and b are 
the grid sizes for the grid cell at (5, q) = (i, j), 8 is the angle 
between coordinate lines at (i, j), and /3 is the angle between 
the q line and they axis, y is the angle between the 5 line and 
the x axis, i.e., 0 + fi + y = 90”; ri, rll, r12 are the grid size 
ratios relative to the grid size a in the 5 direction. On the 
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+ 1 =i =i+l =i+2 
- 

V=j-1 

11 =j-2 

FIG. 1. Physical dimensions and angles in the formula. 

other hand, r2, r2,, rz2 are those relative to the grid size b actually used in most applications to estimate the trunca- 
along the q direction. Note that for a uniform grid, the value tion errors. 
of r is unity. d/?‘s and dy’s are the changes of angles between For the second derivatives, xti; can be expressed as 
neighboring grids. The metric coefficients in Eqs. (12) to 
(14) can be expressed in terms of these angles and grid size 
ratios, for example, with At = Aq = 1, x~5~(xi+I.j~xi,j~~(xi,j~xi-l,j~ 

(A02 

xg = xi+l,j-xi,, 
=xi+l,j -xi,j=acosy 

= a cos y - ar, cos(y + Ay) 
At = a cos y( 1 - rl cos Ay) + ar, sin y sin Ay 

and, similarly, 

x,, = b sin /? 
and, similarly, 

yt = a sin y X ,,,, = b sin /I( 1 - r2 cos Ap) + br, cos fi sin Ab 

y,=bcosfi 
(15) 

yet = a sin y( 1 - rl cos Ay) + ar, cos y sin Ay (16) 
J=x<y,,-xsyr=absinO. 

Y,, = b cos /3( 1 - r2 cos AB) + br, sin /? sin AD. 

Note that the one-sided differencing scheme is used here 
to insert the physical dimensions and grid angles into the Let 

truncation error formula. Higher order schemes can also be 
used but the resulting expressions will become much more R sc2 = 1 - rl cos Ay 

complicated and harde.r to interpret. Moreover, in deriving 
the following expressions the main object is to show the rele- RtS2 = rl sin Ay 

vant physical factors which compose the formula. For this R 
purpose, the accuracy of the scheme is not of primary 

,,c2 = 1 - r2 cos Ap 

importance. Note also that it is Eqs. (12) to (14) that are R ,,s2 = r2 sin As. 
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Equation (16) can then be written as 

xc5 = aRgc2 cos y + aRrs2 sin y 

X qq = bR,,, sin fi - bR,,, cos b 
(17) 

yss = aRtc2 sin y - aRtsz cos y 

y,, = bR,,, cos /? + bR,,Sz sin b. 

One may call parameters R’s the grid smoothness 
parameters, which are functions of grid size ratios and 
changes of gridline angles. They can also be considered as 
measures of grid skewness and deviation from uniformity. 
Note that in a parallel uniform grid system, these grid 
smoothness parameters assume the value of zero. On the 
other hand, with a highly skewed and nonuniform grid, 
these parameters can have large values. 

For the third derivatives, 

xc<< = ; (&a cos y - Resj sin y) 

yttt =; (Rtc3 sin Y + Rts3 ~0s Y) 

(18) 
X vm =; CR,,3 sin /J + R,,s3 cos /?) 

Y WV =; (R,c, cos B - Rqs3 sin /I), 

where 

R e(c3 = r11 ax AY,, + f.12 cos Ay,, - r, cos Ay - 1 

R 5s3 = rll sin dy,, + ri2 sin dy,, - rl sin dy 

R qc3 = r21 cos A/3,, + r22 cos AB,, - r2 cos A/3 - 1 

R qs3 = r21 sin A/?,, + r22 sin Ap,, - r2 sin A/l 

Again, these grid smoothness parameters reduce to zero in 
a parallel uniform grid system. Furthermore, contravariant 
velocities can be written as 

i-i=uy,-ux,= Vbsin(y+8-cr) 

V=uxg-z4yg= Vasin(cr-y), 
(19) 

where V represents the total velocity. It is observed that pi!? 
represents the flow rate normal to the q line and pP 
represents the flow rate normal to the { line; note that p0 

TABLE I 

Common and Different Factors in r,, , TEZ, T,, 

Common Different 

TEL P, V, Y, 0, a, B rzT rlll 4% ADi,, AY, AY,, f,l, 
T EZ P, V, Y, 0, a, B a, b, r,, AB, AY, fm 
T E3 P, K Y, 0, a, B a’, b2, f (3) 
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and p P make an angle of 8. Expressions ( 15) to ( 18) can be 
substituted into Eqs. (12) to (14) to yjeld 

T El = 4’ 4 {SW + 0 - u)C(cos rf, + sin Y&I &3 

+ ( -sin yf, + cos yf,) RSs31 + sin(cl - y) 

x C(COS(Y + 4 L + SW + 0) fJ R,,, 

+ (sin(y + 0) f, -WY + 0) f,) R,sJ 1 (20) 

T,,=-!-$ (asin(y+e-cc)[(cos2 yf,,+2cos ysinyf,, 

+ sin2 r&J RtC2 

+ (sin y cos yf,, + (sin2 y - cos2 y) fXY 

- sin y cos yf,,) Rgs2] + b sin(a - y) 

x [(COS~(Y + 0) f,, + 2 cos(8 + y) sin(8 + y) fXY 

+~in~(e+~)f,,) R,,,+(-sin(e+y)cos(e+y)f,, 

+ (c0sye + 7) - sin2(8 + y)) fxy 

+cos(e+y)sin(e+y)f,,)R,,,l} (21) 

&3=&-j (a’ sin(y + 8 - cr)(cos3 yf,,, 

+ 3 cos* y sin yf,, + 3 cos y sin’ yf& + sin3 yf,,,) 

+ b2 sin(a - y)[cos3(8 + y) f,,, 

+ 3 c0?(e + Y) sin(8 + Y) f,, 

+ 3 c0s(e + y) sin2(8 + y) fxyy 

+ sin3(e + Y) f,,l>. (22) 

Table I lists the common and different factors among TEI , 
TE2, and TE3. 

Observing the general Eqs. (20) to (22), a few remarks are 
useful. First of all, TEI does not contain the grid size a or b 
and therefore is of zero-order accuracy. This implies that if 
TE1 is dominant, grid refinement will not ensure error 
reduction. Second, TEI and T,, will disappear if a uniform 
parallel grid is employed as can be seen in Eqs. (23 ) and (24) 
below. Note also that TEI and T,, contain the grid smooth- 
ness parameters, but expression TE3 does not, and therefore 
grid skewness (Afi, Ay, A/l,, Ay,) and grid uniformity 
(ri, rij) do not affect TE3. On the other hand, grid unifor- 
mity may play a very important role in TEI and T,, if the 
values of ri, rii are much larger or smaller than unity, since 
they may dominate the grid smoothness factors which are 
the multipliers in the expressions. This is consistent with the 
observation of Castro and Jones [2]. They pointed out that 
there will be significant zero-order errors unless the mesh 
expansion ratios are close to unity. Third, when the total 
velocity vector aligns with one of the gridlines, that is, a = y 
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or tx = 8 + y, half of the terms in Eqs. (20) to (22) can be 
dropped, and this may significantly reduce the truncation 
errors. Finally, the individual grid angles CC, fl, y, 8 may or 
may not be important, since truncations errors also depend 
on the combination of these angles. These combined angles 
represent the gridline angle relative to the x-axis (y + 0) and 
the angles between the gridlines and the total velocity vector 
(y + 8 - c(, a - y). To construct an optimal grid angle, 
the interactions between grid distribution and flow field 
(representing by various function derivatives fCi,‘s) should 
be taken into account. Unfortunately, this is very difficult in 
practice. However, it is obvious that grid orthogonality does 
not guarantee that the truncation error can be minimized. 
The observations above imply that both grid size reduction 
and grid quality improvement can cause error reduction in 
general. 

It is possible to further simplify Eqs. (20) to (22) with a 
special grid arrangement. For example, consider the grids 
with parallel and straight grid lines, that is, dy = dy,, = 
dy,, = d/3 = LIP,, = AB,, = 0, so that 

T,, = & { sin(y + 0 - ct)(cos yf, + sin yf,) 

x (rl, + r12 - rI - 1) + sin(a - y)[cos(y + 0) f, 

+ WY + 0) fyl(r2, + r22 - r2 - 1)) (23) 

T,, = 5 (u sin(y + 8 - cc)(cos’ yf,, + 2 cos y sin yfXY 

+ sin’ y&,)(1 - rl) + b sin(cc - y)[cos2(y + 0) f,, 

+ 2 c0s(e + y) sin(0 + y) fxY 

+sin2(e+y)f,,l(l-r2)} (24) 

L3=& { a2 sin(y + 8 - ~1) 

x (cos3 yf,,, + 3 cos’ y sin yf,, 

+ 3 cos y sin’ yfXYY + sin3 yf,,,) + b2 sin(cr - y) 

x [c02(e + Y) fx,, + 3 c02(e + Y) sin(8 + Y) fx, 

+ 3 c0s(e + y) sin2(8 + y) fxYY 

+ sin3(e + y) f,,l>. (25) 

Note that TE3, which is free from grid smoothness 
parameters, is not altered by this simplification. From the 
above equations, it is clear that the truncation error 
depends upon the grid sizes a and b, the combined angles 
such as y + 0 - LX, y + 0, LY - y and grid size ratios r, ‘s, r2’s. 
It should be pointed out that in the case of large r’s (and/or 
large grid smoothness parameters R’S), large errors may 
result. It is also worth noting that if a small geometric 
expansion ratio E 6 1 (i.e., rll = 1 + E, r, = l/l + E, etc.) is 
employed, as is common in grid distribution, then from Eqs. 
(23) and (24) it is seen that T,, = O(a2) and T,, = O(E). 

If other second-order differencing schemes are employed 
in Eq. (l), the only difference in expressions (4) to (6) is the 
leading constants. For example, with the second-order cen- 
tral scheme, the leading constants in Eqs. (4) (5), and (6) 
become - i, - 4 and - i, respectively. Therefore, the trun- 
cation error formula obtained above can still be used as a 
good indicator for the truncation error distribution in a 
more general sense. In the next section test cases are used to 
demonstrate some characteristics of the expressions. In 
these problems, second-order upwind and second-order 
central schemes are employed for the convection and 
diffusion terms, respectively. 

TEST PROBLEMS AND DISCUSSION 

To assess the usefulness of the derived formula, a fully 
developed channel flow with exact solution is employed. 
The Reynolds number based on the inlet velocity and height 
is 200. In this test case, the computed truncation errors 
using Eqs. (12) to (14) are compared to those estimated by 
the exact solution. The skew grid is arbitrarily designed as 
shown in Fig. 2. The grid number is 10 x 49. The contours 
shown in Fig. 3a are obtained by taking the difference 
between the computed value and the exact value of the 
convection terms, that is, 

~f-bfh, 

where JZ and L, are the differential and difference operators 
for the convection terms,f, fh are the exact solution and the 
computed solution based on a 10 x 49 grid, respectively. 
Figure 3b shows the truncation error distribution for the u 

FIG. 2. Skew grid arrangement for the fully developed channel flow. 
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FIG. 3. Truncation error contours for convection terms of U momentum equation. 

momentum equation calculated using Eqs. (12) to (14). 
The resemblance between the two plots is clearly illustrated. 
The errors are concentrated in the regions where the grid 
changes abruptly. This observation can be justified by using 
Eqs. (12) to (14). In these equations, since the flow is fully 
developed, 89 P in most regions where the r gridline is 
horizontal. Moreover, all thefderivatives with respect to x 
can be dropped, and the remaining terms (with y5<(, y,,, 
etc.) will then be large when the grid changes suddenly. 

Equations (20) to (22) are in general form for the present 
test cases; careful observation of these equations reveals that 
it is difficult to separate the effect of each factor. However, 
the following two cases with a specially designed grid may 

be used to demonstrate, first of all, the effect of gridline 
angle (grid orthogonality) on the truncation error and, 
second, the usefulness of the derived formula in estimating 
the truncation error distribution. The first test case for these 
purposes is a laminar channel flow with two different 
velocity layers. To show the effect of gridline angle 0, zigzag 
grid lines are employed to construct the grid. Although this 
grid arrangement is not of practical interest, it may simplify 
the derived formula and single out the role of the angle 0 in 
truncation errors. The next problem is a laminar backward- 
facing step flow with a parabolic inlet velocity. Again, zigzag 
grids are used to show the role of the angle 13 in truncation 
errors. For both of the above two test cases, since exact 

b 

r-- I 

FIG. 4. Grid arrangement, streamlines and velocity distribution of the channel flow with two different velocity layers: (a)grid arrangement; 
(b) streamlines; (c) velocity vectors. 



96 LEE AND TSUEI 

: 
0 
l 

3.0 

2 
2 I- 1.0 

the range unless 8 is very small. The overall convection term 
error in Fig. 5 is estimated numerically by summing the dif- 
ference of the values of the fine grid (101 x 101) convection 
terms and the coarse grid (3 1 x 21) convection terms at each 
grid point and then dividing by the total number of grids N; 
that is, 

where L is the difference operator for the convection terms 
as mentioned above. The computed result is consistent with 
expression (26). This implies that similar accuracy can be 
obtained whether one uses small 8 grids or orthogonal grids. 
Although not shown here, the solution error (relative to the 
reference solution) has similar behavior. 

001 Specifications and computed streamlines of the second 
0.0 15.0 30.0 45.0 60.0 75.0 90.0 test problem are shown in Fig. 6. A backward-facing step 

0 flow with a parabolic inlet velocity and average Reynolds 

FIG. 5. The effect of 0 angle on overall truncation errors for convec- .number of 800 is used. The reference solution of this 
tion terms of u momentum equation (two-layer flow). problem is again obtained by using a uniform fine grid of 

101 x 101. The zigzag grid in Fig. 4 is also used in this 

solution is not available, a uniform tine grid solution is used problem. In this case, all the simplifications made in the last 

as a reference for comparison. test case are the same except that c1 is no longer zero, and 

For the first test flow problem, its grid arrangement and therefore, Eq. (20) is eliminated again and Eqs. (21) and 

streamlines are shown in Fig. 4. In this problem, streamlines (22) assume the forms of 

are parallel to the 5 lines except near the inlet region. Since 
the grid is uniform along the 5 lines, rl = r2 = rii = 1, c1 z 0, T,*= 
y=O, j?=90”-0, Ay=Ay,,=Ay,,=O, A&=0, A/3= 

2 sin CI cos 8(2 cos of,, + 2 sin ef,,) 

A/&, = 180” + 20. Consequently, from Eqs. (20) to (22), T,, 
and TE2 can be eliminated and T,, becomes &3=&j [a* sin(B - ~1) f,,, + b* sin cr(cos3 of,,, 

+ 3 cos* 8 sin ef,, + 3 cos e sin* ef,,, + sin3 ef,,,)]. 

(27) 

Obviously, Eq. (26) is independent of 0. Numerically, a In this particular case, some velocity derivatives are much 
reference solution of this flow problem is obtained by using smaller than others, and therefore those derivatives are 
a uniform grid of 101 x 101. A zigzag grid solution of 31 x 21 neglected. Numerically, it can be shown that If,,1 $ 
is then used to display the effect of 8 on truncation errors. In I.f,,l > ILI and lf,,,l % Ifxxxl~ Ifxyyl~ IfJ in most of the 
Fig. 5 it can be seen that change in 8 does not change the region. To provide accurate values so that the following 
overall truncation errors of convection terms over most of simplified formula can stand, all the f derivatives are 

x5 

u PARABOLIC 
v-o 

0.5 

E 
s=o.475 

u=o 
v=o 

FIG. 6. The backward-facing step flow. 
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a 
A Eqs. (211, (22) 
----- Eq. (28) 

0 
‘O 60 ;; 

e 4.0 

* (;,, 

---*---------- 
_--- 

/ I I I I I 00 
0 15.0 30.0 45.0 60.0 75.0 90.0 

8 

b 
- Eq. (21) 
---- Eq. (22) 

P / 
/’ 

my’ 

\i:/ 

/’ 
/’ 

,J 
/’ 

__-- SC’ 

/ / 
/’ 

FIG. 7. The effect of 0 angle on truncation errors for convection terms of u momentum equation (step flow): (a) truncation errors obtained by 
Eqs. (21), (22), and (28), respectively; (b) effect of 0 angle on TE2 and TE3. 

calculated based on the line grid solution and the mixed 
partial derivatives are calculated by a method which is 
accurate to the second order for both Ax and Ay [6]. 
Therefore, the truncation error can be approximated as 

T, = T,, + TE3 + Higher Order Terms 

pVb2 . 
E 2p Vb sin c1 cos of,, + 3 sin’ 8 sin clf,,.YY 

+ Higher Order Terms 

z p Vb sin c( 
( 

2 cos Of,, + 4 sin* Of,,, 
> 

+ Higher Order Terms. (28) 

The overall truncation errors of convection terms com- 
puted by Eqs. (21), (22), and (28), respectively, are plotted 
in Fig. 7a. Equation (28) is a fair approximation to the com- 
bination of Eqs. (21) and (22). Obviously, Eq. (28) indicates 
that 8 = 90” does not yield the minimum T, and the optimal 
8 is strongly influenced by the derivatives of flow properties 
such as fXY and fVYY. In Fig. 7b, TE2 is seen to decrease as 8 
increases. At 0 = 90”, T,, vanishes, as expected for an 
orthogonal grid. On the other hand, T,, increases with 8. 
Note that T,, is vanishingly small in all cases of this 
problem, as it should be theoretically. The truncation errors 
estimated numerically by the same method used in Fig. 5 are 
shown in Fig. 8. Similar trends are observed in Fig. 7a and 
Fig. 8. This result further confirms the usefulness of the 
derived formula. In Fig. 9, three 8 angles are chosen to 
demonstrate the distribution of errors. This figure again 
shows that an orthogonal grid does not guarantee best 

results. Most errors occur in the shear layer region. 
Figure 10 depicts the truncation error contours of the u 
momentum equation estimated numerically using the same 
method used in Fig. 3a. A similar effect of 0 on the error dis- 
tribution is observed. The truncation error formula is shown 
to be a fairly good error indicator. On the prediction of the 
reattachment lengths defined in Fig. 6, Fig. 11 again shows 
a similar trend in the effect of 8 on the solution, and the case 
with 8 = 90” is not the best one. 

Two things are observed from the results of these test 
problems. First of all, the expressions for the truncation 

0 

'0 
r 6.0 

60 

2 

g 
W 

.i 4.0 

f 

g 

$ 

2.0 

0.0 I I I I I 

i.0 15.0 
f 

30.0 45.0 60.0 75.0 90.0 

0 

FIG. 8. The effect of 0 angle on overall truncation errors for convec- 
tion terms of u momentum equation (step flow). 
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0.034, , -0.036 

0.08\ ,'-0.06 

-0.03 

FIG. 9. Truncation error contours for convection terms of u momen- 
tum equation at different 0 angle, estimated by the formula. 

errors of the convection terms closely describe the actual 
numerical errors of the flow problem. Second, the most 
accurate solution does not take place at 8 = 90”. A similar 
observation was pointed out by Shyy and Braaten [7]. 
They investigated the effect of grid line angle 8 on the 
accuracy of the numerical solution. A series of two-dimen- 
sional, fully developed flow calculations were performed for 
a square duct. Four different grids corresponding to grid 
orientations of O”, 15”, 30”, and 45” about the reference 
Cartesian coordinates were used. As the angle of rotation 
increased, the grid changes from an orthogonal uniform 
rectangular grid to one with increasing skewness and non- 
orthogonality. They found that for the same number of grid 
points, the highly skewed grid gave a more accurate center 
point location and a 151 x 151 uniform grid was required in 
their case to achieve the same accuracy as the 51 x 51 
skewed grid with 45” rotation. 

As demonstrated in Eqs. (20) to (22), it is clear that to 
minimize the truncation errors one should reduce the grid 
size as well as improve the grid quality (grid skewness and 
the grid smoothness). Reducing grid size remains the most 
straightforward means in reducing the higher order errors, 

e =450 

e = 150 

FIG. 10. Truncation error contours for convection terms of u momen- 
tum equation at different 0 angle, estimated by using reference solution. 
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FIG. 11. The effect of0 angle on predicted reattachment lengths of the 
backward facing step. 

however, this should be subject to the limitations of com- 
puter resources; therefore grid size reduction should be 
limited to those regions which need higher resolution. Better 
grid quality also helps in reducing errors. An optimal grid 
arrangement is very much flow field dependent and is 
generally difficult to achieve as mentioned before. Accord- 
ing to Eqs. (20) to (22), when the total velocity aligns with 
one of the grid lines (e.g., c( = y + 0), many terms in the 
expressions can be dropped, and this may significantly 
reduce the truncation errors. Therefore, to better resolve flow 
problems, it seems natural to align grid lines according to 
the flow stream and cluster grids in the regions, where local 
truncation errors are large, to reduce both the grid sizes and 
the truncation errors. Consequently, the adaptive grid 
method appears to be a good approach. As an application, 
in the final test case the truncation error formula is applied 
to estimate errors of an adaptive solution. 

The equidistribution scheme of grid adaption employed 
by Dwyer et al. [S] is modified [9] and used in the present 
problem to construct the adaptive grid. The weight function 
in the x direction at the ith grid assumes the form 

Wi=l+(d,)i+ i (d,),.C,.exp(-Ii-kl), (29) 
k= l,k#i 

where C, is an arbitrary constant for the control of the 
coupling of the weight functions among neighboring grids. 
The third term on the right-hand side of Eq. (29) is to 
account for the influence of the property gradients of the 
neighboring grids in grid adaption, and this influence is 
assumed to decay exponentially. In the regions of large 
gradient change, this term may ease the sudden change of 
the grid size. This modified method was shown [9] to 
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FIG. 12. (a) Adaptive grid for the backward facing step flow. (b) The truncation error contours for the uniform and adaptive grid solutions, 

improve both grid quality and solution accuracy as 
compared to the original one. 

The adaptive grid so constructed is shown in Fig. 12. Also 
shown in the figure are the truncation error contours 
obtained on a uniform grid and on an adaptive grid. The 
truncation errors are computed using Eqs. (12) to (14). The 
application of adaptive gridding reduces the maximum 
truncation error and the overall truncation errors as well. 

Theoretically, in performing grid adaption, the grid 
should be fine at points where the local truncation error is 
large and not at points where the flow property gradient is 
large, as pointed out by Hedstrom and Rodrique [lo]. 
However, in practice, direct evaluation of local truncation 
error is not straightforward. Error estimates are often 
obtained by the method such as the Richardson extrapola- 
tion, which requires calculation of the flow field with two 
different mesh sizes. The difference between the solutions at 
the same grid point is then used as an estimate of the error 
[ 111. The computational overhead of this method is not 
trivial. The truncation error formula derived in this study 
provides a useful indicator of local truncation error. Further 
use of the formula in adaptive grid methods is currently 
being studied by the authors [ 121. 

CONCLUSIONS 

From the expressions for truncation error and the results 
of test problems, some observations can be summarized. 
First, should T,, appear in the expressions, it cannot be 
reduced by decreasing the grid size, since T,, is independent 
of grid size. This implies that if T,, is dominant in the com- 
putation, grid refinement does not necessarily ensure the 
error reduction. For a curvilinear coordinate system, T,, is 

in general the leading truncation error term and is of the 
first order of accuracy. T,, can be eliminated if a uniform 
parallel grid is employed; grid orthogonality is not a must to 
eliminate TE2. It is also noted that grid uniformity and grid 
skewness have no effect on T,,. Grid skewness lowers the 
order of accuracy through T,, and TE2. Second, if the grids 
are so distributed that the gridlines align with the total 
velocity vector or streamline, many terms in T,, and T,, 
can be dropped, and this in general reduces the truncation 
error of the convection terms. Third, the use of an 
orthogonal grid in general does not guarantee truncation 
error reduction, and this is seen in the results of both test 
problems as well as in the simplified equations (26) and 
(28). The remarks made by Thompson et al. [S] on the 
angle 0 should not be misinterpreted. An optimal grid 
arrangement is in general strongly dependent upon the flow 
field. Therefore, to optimize the truncation errors, use of 
grid adaption based on the flow field is suggested. 

The formula derived in the present study clearly 
demonstrates important factors which affect the truncation 
errors of two-dimensional convective terms. To reduce trun- 
cation errors, this formula reveals that the following factors 
are relevant: grid size, grid size ratio, angle between the 
gridlines, angle of velocity vector relative to the gridline, 
grid uniformity and skewness, and derivatives of flow 
properties. From the truncation error expressions, one may 
find that it is impossible to determine the best grid exactly, 
due to the strong connection between the flow field and the 
grid itself. Nevertheless, in constructing a curvilinear grid, 
one should keep the grid as smooth as possible to reduce 
T TE,, El> and one should reduce grid size where needed to 
reduce T,, , T,, , and higher order error terms. With limited 
grids, adaptive gridding provides a partial solution to grid 
optimization. The present formula also provides a useful 
indicator of truncation error distribution. 
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